The critical exponent v of directed TSAWs and TSALFs on Sierpinski carpets: an analytic approach

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 245191
(http://iopscience.iop.org/0305-4470/24/21/028)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 14:00

Please note that terms and conditions apply.

## COMMENT

# The critical exponent $\nu_{\perp}$ of directed TSAWs and tSalfs on Sierpinski carpets: an analytic approach 

H Englisch $\dagger$<br>Physics Department, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China

Received 12 March 1991


#### Abstract

It is shown rigorously that the critical exponent $\nu_{\perp}$ for a directed true self-avoiding walk on an arbitrary self-similar carpet is 1 . Hence the simulation values by Yao et al represent an artefact due to finite-size effects. The corresponding exponent for a Levy flight with parameter $u$ is $\max (1,1 / u)$.


The directed true self-avoiding flight with parameter $u$ on a carpet is defined by a probability distribution $p(r) \sim r^{-u-1}$ for the step length $r \in \mathbb{N}$ as follows. Let $F$ be the position of the flyer, $\boldsymbol{x}$ and $\boldsymbol{y}$ the unit vectors in direction $\boldsymbol{x}$ and $\boldsymbol{y}$, respectively. $P=\Sigma_{(h)} p(r) / 2$ is the a priori probability that the flyer will arrive after the next step in a hole of the carpet. Hence the index $(h)$ means that one has to sum over all $r$ with $\boldsymbol{F}+r \boldsymbol{x}$ or $\boldsymbol{F}+r \boldsymbol{y}$ lying in a hole. (If both end-points lie in a hole then $p(r) / 2$ is counted twice in the sum.) Now, if $r x$ or $r y$ is an admissible step it has the a posteriori probability $p(r) /(2 \sim 2 P)[1,2]$. In the limit $u \rightarrow \infty$ we get a directed walk, i.e. the step length is always 1 . A Lévy flight is characterized by the divergence of the variance of the step length, which is equivalent to $u \leqslant 2$. Since a directed walk is automatically self-avoiding it seems that the difference between the true self-avoiding walk (TSAw) and the usual self-avoiding walk (SAW) disappears. But the different weights in the probability distribution [2] can influence the critical parameters. The average is performed for the TSAW over the starting points; every admissible point has the same probability, whereas for the SAW every configuration has the same probability. The two critical exponents $\nu$ and $\nu_{\|}$are independent of the kind of self-avoiding walk. They are defined as the averaged end-to-end displacement $\overline{R_{*}^{21 / 2}} \sim N^{\nu_{*}}$ (* denotes $\|$ or no index) and can be derived for both directed self-avoiding walks on an arbitrary carpet easily:

$$
\begin{align*}
& R_{\|}=\sqrt{2} N / 2 \rightarrow \nu_{\|}=1  \tag{1}\\
& R_{\|} \leqslant R \leqslant N \rightarrow \nu=1 .
\end{align*}
$$

The exponent $\nu$ lies only slightly outside the intervals calculated by Yao et al [1]. Their claimed dependence of $\nu$ on the fractal dimension (cf the abstract in [1]) obviously does not appear. But the deviations for $\nu_{\perp}$ of the DTSAW are remarkable, e.g. for their first carpet they published the estimate $\nu_{\perp}=0.59 \pm 0.01$. Let us derive for this carpet a lower bound of the form $\overline{R_{\perp}^{2}}{ }^{1 / 2} \geqslant c_{1} N$ which implies immediately $\nu_{\perp}=1$. It will be

[^0]evident how to get similar bounds with constants $c_{2}>c_{1}, c_{3}>c_{1}$ for their other two lattices. Incidentally, for the DSAW on a regular lattice there was published earlier an estimate 0.86 for $\nu$ [3] which was corrected by analytic considerations [4-6] to $\nu=1$.

For notational simplicity, let us assume that $N$ is a multiple of 4 . Determine the integer $n$ by $5^{n-1}<3 N / 4 \leqslant 5^{n}$ and consider the hole $A B C D$ of size $5^{n} \times 5^{n}$ of an $(n+1)$-stage cell. Define the hexagon $\mathbb{H}=A S_{1} S_{2} S_{3} S_{4} S_{5}$ by $S_{1} \in A D, S_{5}=A B, \overline{S_{1} D}=$ $\overline{S_{5} B}=3 N / 4, S_{1} S_{2}\left\|S_{3} S_{4}\right\| A B, S_{2} S_{3}\left\|S_{4} S_{5}\right\| A D$ and $\overline{S_{1} S_{2}}=\overline{S_{4} S_{5}}=N / 4$ (cf figure 1). The area of H is $\left(N / 4+2 \times 5^{n}-3 N / 2\right) N / 4$, the area of the $(n+1)$-stage cell without the hole $A B C D$ is $24 \times 5^{2 n}$. Therefore, the probability that a random initial point of the $(n+1)$-stage cell lies in $\mathbb{H}$ is at least $1 / 216$. The hexagon $\mathbb{H}$ was constructed in such a way that every path of length $N$ starting in an arbitrary point $P \in \mathbb{H}$ fulfils

$$
\begin{equation*}
R_{\perp} \geqslant \sqrt{2} N / 4 \tag{4}
\end{equation*}
$$

that is

$$
\begin{equation*}
\overline{R_{\perp}^{2}} 1 / 2>\sqrt{3} N / 72 \tag{3}
\end{equation*}
$$

Lower bounds sharper than (3) are available if ( $n+k$ )-stage cells, $k>1$, are considered. Then the surroundings of the left lower corner of the holes of size $5^{n+1}, \ldots, 5^{n+k-1}$ contain additional points whose paths beginning there obey (2) definitely.


Figure 1. The hexagon $H$ belonging to the hole $A B C D$ of the ( $n+1$ )-stage cell.
For $N=2^{7}$, the inequality (3) yields, e.g., $\log _{2} \overline{R_{\perp}^{2}}{ }^{1 / 2}>1.62$, which is still plainly below the value 3.403 shown in figure 6 of [1]. How must the proof be altered for partially directed tSAws [7] with three possible directions (up, down, right) of the walker and directed true self-avoiding Lévy flights (DTSALF) [7, 8]? For the partially DTSAW, $H$ becomes a rectangle of size $N / 6 \times(W-N)$ around the centre of the left side of a hole with width $W$, whereas for the dTSALF with $u>1$ the hexagon and the hole from figure 1 have to be multiplied by the expectation value $\langle r\rangle=\Sigma r p(r)$ of the step length. Equation (2) or its modification $R_{\perp} \geqslant \sqrt{2} N\langle r\rangle / 4$ for the DTSALF is no longer valid for every path starting in $\mathbb{H}$, but only for a set with probability larger than some $N$-independent constant. Hence, $\nu_{\perp}=1$ remains true in both cases as well as $\nu=\nu_{\|}=1$, though instead of (1) only trivial upper bounds $R_{\|} \leqslant R \leqslant N$ for the partially dTSALF are fulfilled for every path. Nevertheless, the averages are still proportional to $N$. The arguments of [7] yield $\nu=\nu_{\|}=\nu_{\perp}=1 / u$ for the DTSALF with $u \leqslant 1$, i.e. the steps are so large that the holes of the fractal do not alter even the exponent $\nu_{\perp}$. These exponents differ again remarkably from the simulation values in [8].

## Acknowledgment

I thank Professor K-L Yao for making available to the reference [8] prior to publication.

## References

[1] Yao K-L and Zhuang G-C 1990 J. Phys. A: Math. Gen. 23 L1259
[2] Amit D J, Parisi G and Peliti L 1983 Phys. Rev. B 271635
[3] Chakrabarti B K and Manna S S 1983 J. Phys. A: Math. Gen. 16 L113
[4] Cardy J L 1983 J. Phys. A: Math. Gen. 16 L355
[5] Redner S and Majid I 1983 J. Phys. A: Math. Gen. 16 L307
[6] Szpilka A M 1983 J. Phys. A: Math. Gen. 162883
[7] Englisch H, Wang J-F and Yao K-L 1991 J. Phys. A: Math. Gen. 244843
[8] Zhuang G-C and Yao K-L 1991 J. Phys. A: Math. Gen. 243359


[^0]:    $\dagger$ On leave of absence from Universität Leipzig, Sektion lnformatik, PSF 920, D-O-7010 Leipzig, Federal Republic of Germany.

