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Abstract. It isrhown rigorously that thecritical exponent vL for adirected trueself-avoiding 
walk on an arbitrary self-similar carpet is I. Hence the simulation values by Yao el 01 

represent an artefact due to finite-sire effects. The corresponding exponent for a Levy flight 
with parameter U is mai(1, I / u ) .  

The directed true self-avoiding flight with parameter U on a carpet is defined by a 
probability distribution p (  r )  - r-"-' for the step length r c N  as follows. Let F be the 
position of the flyer, x and y the unit vectors in direction x and y ,  respectively. 
P = X ( h )  p ( r ) / 2  is the a priori probability that the flyer will arrive after the next step 
in a hole of the carpet. Hence the index ( h )  means that one has to sum over all r with 
F +  rx or Ff ry lying in a hole. ( I f  both end-points lie in a hole then p ( r ) / 2  is counted 
twice in the sum.) Now, if rx or 'y is an admissible step it has the a posteriori probability 
p ( r ) / ( 2 - 2 P )  [ l ,  21. In the limit u + m  we get a directed walk, i.e. the step length is 
always 1. A Levy Right is characterized by the divergence of the variance of the step 
length, which is equivalent to U S 2. Since a directed walk is automatically self-avoiding 
it seems that the difference between the true self-avoiding walk (TSAW) and the usual 
self-avoiding walk (SAW) disappears. But the different weights in the probability 
distribution [ 2 ]  can influence the critical parameters. The average is performed for the 
TSAW over the starting points; every admissible point has the same probability, whereas 
for the SAW every configuration has the same probability. The two critical exponents 
U and uI1 are independent of the kind of self-avoiding walk. They are defined as the 
averaged end-to-end displacement R?'- N " .  (* denotes 11 or no index) and can be 
derived for both directed self-avoiding walks on an arbitrary carpet easily: 

Rll = f i N I 2 +  U I I  = 1 

R l l S R <  N +  u =  1. 
( 1 )  

The exponent Y lies only slightly outside the intervals calculated by Yao et a/ [ I ] .  
Their claimed dependence of Y on the fractal dimension (cfthe abstract in [ I ] )  obviously 
does not appear. But the deviations for uI of the DTSAW are remarkable, e.g. for their 
first carpet they published theestimate ul = 0.59i0.01. Let us derive for this carpet a 
lower bound of the form R;' ' 'a  c, N which implies immediately uI = I .  It will be 

t On leave of absence from Universitit Leipzig, Sektion Informatik, PSF 920, D-0.7010 Leipzig. Federal 
Republic of Germany. 
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evident how to get similar bounds with constants c2 > c , ,  c3> e ,  for their other two 
lattices. Incidentally, for the DSAW on a regular lattice there was published earlier an 
estimate 0.86 for U [31 which was corrected by analytic considerations [4-61 to U = 1. 

For notational simplicity, let us assume that N is a multiple of 4. Determine the 
integer n by 5 " - ' < 3 N / 4 S 5 "  and consider the hole ABCD of size 5" x5"  of an 
( n  + 1)-stage cell. Define the hexagon W = AS,S,S,S,S,byS, E AD, S, = AB, S ,D  = 
- = 3 N / 4 ,  S,S211S3S411AB, S2S311S4S,IIAD and S , S 2 = S , S s =  N / 4  (cf figure 1). The 
area of W is ( N / 4 + 2 x 5 " - 3 N / 2 ) N / 4 ,  the area of the (n+l)-stage cell without the 
hole ABCD is 24x  52". Therefore, the probability that a random initial point of the 
( n  + I)-stage cell lies in W is at least 11216. The hexagon W was constructed in such a 
way that every path of length N starting in an arbitrary point PEW fulfils 

- 

R , a f i N / 4  ( 4 )  

R:'"> f i N / 7 2 .  (3) 

that is - 

Lower bounds sharper than ( 3 )  are available if ( n  + k)-stage cells, k > 1, are considered. 
Then the surroundings of the left lower corner of the holes of size Y+', . . . ,5"+*- '  
contain additional points whose paths beginning there obey ( 2 )  definitely. 
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Figure 1. The hexagon W belonging to the hole ABCD of the ( n  t I)-stage cell. 

- 
For N = 2', the inequality ( 3 )  yields, e.g., log, R:"'> 1.62, which is still plainly 

below the value 3.403 shown in figure 6 of [ I ] .  How must the proof be altered for 
partially directed T S A W ~  [7] with three possible directions (up, down, right) of the 
walker and directed true self-avoiding LOvy flights (DTSALF) [ 7 , 8 ] ?  For the partially 
DTSAW, W becomes a rectangle of size N / 6  x ( W - N )  around the centre of the left 
side of a hole with width W, whereas for the DTSALF with U >  1 the hexagon and the 
hole from figure 1 have to be multiplied by the expectation value ( r ) = Z  r p ( r )  of the 
step length. Equation (2) or its modification R ,  3 f i N ( r ) / 4  for the DTSALF is no longer 
valid for every path starting in W ,  but only for a set with probability larger than some 
N-independent constant. Hence, uL = 1 remains true in both cases as well as U = U,, = 1, 
though instead of (1) only trivial upper bounds RIl  s R S N for the partially DTSALF 

are fulfilled for every path, Nevertheless, the averages are still proportional to N. The 
arguments of [ 7 ]  yield U =  uil = uL = l / u  for the DTSALF with U S  1, i.e. the steps are 
so large that the holes of the fractal do  not alter even the exponent uL. These exponents 
differ again remarkably from the simulation values in [81. 
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